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Abstract—We work on the problem of recognizing license
plates and street signs automatically in challenging conditions
such as chaotic traffic. We leverage state-of-the-art text spotters
to generate a large amount of noisy labeled training data. The
data is filtered using a pattern derived from domain knowledge.
We augment the training and testing data with interpolated
boxes and annotations that make our training and testing robust.
We further use synthetic data during training to increase the
coverage of the training data. We train two different models for
recognition. Our baseline is a conventional Convolution Neural
Network (CNN) encoder followed by a Recurrent Neural Network
(RNN) decoder. As our first contribution, we bypass the detection
phase by augmenting the baseline with an Attention mechanism
in the RNN decoder. Next, we build in the capability of training
the model end-to-end on scenes containing license plates by
incorporating an inception based CNN encoder that makes the
model robust to multiple scales. We achieve improvements of
3.75% at the sequence level, over the baseline model. We present
the first results of using multi-headed attention models on text
recognition in images and illustrate the advantages of using
multiple heads over a single head. We observe gains as large
as 7.18% from incorporating multi-headed attention. We also
experiment with multi-headed attention models on French Street
Name Signs dataset (FSNS) and a new Indian Street dataset that
we release for experiments. We observe that such models with
multiple attention masks perform better than the model with
single-headed attention on three different datasets with varying
complexities. Our models outperform state-of-the-art methods on
FSNS and IIIT-ILST Devanagari datasets by 1.1% and 8.19%
respectively.

I. INTRODUCTION

Text spotting or optical character recognition (OCR) in

scenes has many applications such as helping the visually

impaired, helping travellers translate texts on signboards and

also robotics. Reading the scenes end-to-end has an advantage

of utilizing the global context in street boards or multi-line

license plates, which enhances the learning of patterns. One

of the important factors that separates a character level OCR

system from an end-to-end OCR system is reading order.

Attention is thus needed to i) locate the initial characters, read

them and ii) keep the track of the correct reading order in form

of change in characters, words, lines, paragraphs or columns

(in multi-column texts). This observation forms the motivation

of our work.

There has been a rising interest in end-to-end scene text

spotting in images over the last decade [1]–[5]. Spotting text

in scene images is typically performed in two steps, viz., i) text

(a) Fast moving vehicles (b) Basement (dark scene)

(c) Red Light (distant camera) (d) Multi-line plates

Fig. 1. Sample chaotic scenes with predictions of our model (top left of
each box). License plates at varying scales and orientations/locations (in the
camera window) motivate the use of inception-based CNN and attention.

localization/detection and ii) text recognition. Work specific to

the localization task [6], has also been extended to real-time

text detection [7], [8]. For the recognition task, CNNs are

used for feature extraction, followed by RNNs for sequence

classification [2]. Research in scene text spotting has seen

improved solutions in terms of accuracy and speed [4], [5],

but the problem of text spotting in the wild is complicated by

variations in illumination and weather conditions. State-of-the-

art recall, precision and F-measure scores on the COCO-Text

dataset [9] are as low as 28.33, 68.42 and 40.07 respectively.

Determining the correct reading order over multiple text

segments occurring in the same scene is another important

problem that has received relatively little attention in the scene

text literature. With the success of end-to-end models that can

be trained without any supervision at the level of individual

text-boxes [1], [10], a natural next step is to investigate if this

success can be extended to determining the correct reading

order. Thus we analyze results for determining the natural

reading order over scenes with varying complexities. Our

model, described in Section III-B, is able to successfully jump

from one part of multi-line license plates (refer Figure 4

bottom) to another in the correct reading order.

A. Related Work

The particular problem of spotting license plates in scenes

is useful in surveillance, toll collection, parking systems,



Type of Dataset Duration/Quantity Variations Max seq. len. µ, σ (Iavg)

Day time traffic video 36 hr 30 mins motion blur,
Night time traffic video 15 hr 56 mins chaotic, illumination, 10 (per plate) 86.45, 12.94

Night time traffic video with rain 2 hr 28 mins single/dual line

FSNS Dataset
966k train, 39k validation, & motion blur, multi-line,

37 (per board) 95.71, 26.01
43k test data-points multiple views

Indic Street Dataset
1000 videos each covering a board motion blur, varying backgrounds,

180 (per board) 111.64, 32.55
from multiple orientations multi-lingual & multi-line

TABLE I
DATASETS USED FOR OUR EXPERIMENTS. Iavg STANDS FOR AVERAGE IMAGE INTENSITY.

Fig. 2. Top: FSNS sample. Bottom: Indic Street Board samples.

developing smart cities, etc. The problem involves several

challenges, such as the ability to handle a diversity of fonts and

patterns, robustness to geometrical transformations, composite

backgrounds and camera positions as shown in Figure 1.

Moreover in videos, motion blur and varying illumination can

make it harder to recognize the numbers correctly. Features

such as edges, colors, character images, texture, and the

geometric properties of license plates are often used for

detection [11]–[13]. To segment out the character images

(for further recognition) in licence plates, methods based on

connectivity, projections, geometrical rules, contours and/or

template matching have been employed in the past [14]–

[17]. Such methods, however, suffer from segmentation errors.

There have been efforts to develop robust methods based

on learning, to overcome such errors [18]. For example,

sliding window based CNN classifiers, along with RNNs,

have been used for recognizing characters in recent work on

reading license plates [12]. However, methods based on sliding

windows are computationally expensive since they require the

rejection of a large fraction of non-character images.

Recent work on license plate recognition in a chaotic

scenario [11] uses edge-based features and other geometrical

properties to detect license plates in the scene. The false

positive detections are then rejected by a CNN-based binary

classifier. Further, a CNN-based character level recognizer,

with a spatial transformer layer to overcome variations in

brightness and tilt, is also employed.

Obtaining a large amount of labeled training data is an

expensive and human-intensive process. Many state-of-the-

art systems obtain large-scale noisy labels by combining

a large amount of unlabeled data together with a modest

amount of labeled data, (for example in image search for

landmarks [19]). Training with noisy labels is extensively

studied in the literature [20]. In the present work, we use a

state-of-the-art text spotter to obtain noisy labels for a large

number of video frames, and then clean the data using a pattern

grammar. We augment the training data with synthetic data

using SynthText [6], thus increasing the coverage of training.

We then train a CNN-RNN model for recognition. Our end-

to-end model utilizes an inception-based CNN followed by an

attention-based RNN. Our key contributions are as follows: (1)

A new methodology for labelling a large amount of training

data, (refer Section I), that allows us to work with over 1000k

real scene images containing license plates. (2) We present

the first results of multi-head attention models on the task of

text recognition. (3) We release a new multi-lingual data-set

of 1000 videos (with text in Hindi, Marathi and English) each

covering an Indic street board from different orientations. (4)

To obtain synthetic data for License Plates and Indic scene

text, we include License Plate patterns and Devanagari (and

Latin) sequences in SynthText [6].

The multi-lingual data-set and supplementary material for

our paper can be accessed from https://www.cse.iitb.ac.in/
∼rohitsaluja/project. The source code of our work is available

at https://github.com/rohitsaluja22/OCR-On-the-go.

II. DATA DESCRIPTION, PROBLEM SCOPE & ANALYSIS

We use datasets of varying complexities as shown in Table I,

working with various illumination and weather conditions for

the problem of license plate recognition in chaotic scenes.

The conditions and duration of the videos in our dataset are

described in Table I (top). Our work can be applied to any

scene text problem with labels that follow a particular pattern

or grammar. We also perform our experiments with multi-

headed attention mechanism on French Street Name Signs

(FSNS) dataset and a new Indic Street Board dataset. For

FSNS, each data-point consists of four images of a street

board and a corresponding label. In Table I, we provide the

quantitative description of the FSNS Dataset and a new Indic

Street Board dataset that we have released. For Indic street

boards, each of our videos covers a single street board from

different orientations. Samples from these datasets are shown

in Figure 2. We find that in addition to higher sequence length,

the street-board images also have a higher mean and standard

deviation of average image intensity Iimg , as compared to the

license plate images.

To generate labels for the dataset, we first obtain noisy

predictions on every frame of each video (refer to Table I)

using the state-of-the-art text spotter, viz., DeepTextSpotter [5].

We then filter out instances in the dataset that do not follow the

license plate grammar. For analysis, we calculate the accuracy

(at the word-level) of the noisy predictions on an annotated

set of 1000 samples. We observe that 73% of predictions that

follow the license plate grammar are indeed correct. For data



Fig. 3. We train our models on synthetic clean data (top) & real noisy labeled data (bottom). The license plate image flows in multiple splits through the
baseline model, shown by dotted blue arrows. For the end-to-end model, the entire image flows through the model together, shown by green arrows.

augmentation, we further apply the filtered predictions across

the video to correct other frames in the video as follows:

• If two successive (but not consecutive) filtered frames, fi
and fk (where i < k−1), have identical predictions: pi = pk;

• and there exist intermediate frames {fj} (i < j < k) in

the original video, for which no prediction fits the grammar

(or the DeepTextSpotter makes no prediction)

• then we assign the prediction pj = pi(= pk) to all the

intermediate frames {fj}.

• To obtain text-boxes for the intermediate frames {fj},

we apply linear interpolation on text-boxes from the previous

frame fi and from the subsequent frame fk.

III. SYSTEM ARCHITECTURE

As a baseline, we will use a conventional CNN-based

encoder and RNN-CTC based decoder for recognizing cropped

license plate images. However, as we will discuss further

in Section III-B, the problem of multi-scale variation can

be handled by using the inception-based CNN as encoder.

Moreover, the challenge of reading the characters at different

locations in a scene can be handled by the attention based RNN

decoder, thus enabling end-to-end recognition in the scene text

images.

A. Baseline model

As a baseline, we use the seven layer convolutional neural

network (CNN) to extract the features from license plate

images, followed by a two-layer bi-directional long short-term

memory (BLSTM) for decoding the features, and a connec-

tionist temporal classification (CTC) layer for aligning the

decoded predictions. We use the TensorFlow implementation

described in [2]. As shown in Figure 3 (follow dotted blue

arrows), the model is trained on: (1) synthetic clean data:

{Xs,Ys}, with Xs being the synthetic license plate image

(or sub-plate image in the case of a multi-line license plate),

and Ys being the corresponding clean labels, (2) real noisy

data :{Xr,Yr}, with Xr being the real license plate image

(or sub-plate image) and Yr being the corresponding noisy

labels produced using the state-of-the-art DeepTextSpotter.

Inspired by the literature on training neural networks with

noisy data [20], our model shares parameters between the

networks that are trained on the clean and noisy datasets

respectively. We argue, however, that our case is different from

previous work, owing to three distinctive properties:

1) Firstly, the set of synthetic input images {Xs} are

visually distinct from the set of real input images {Xr}, and

are not as useful as the real images for the test data. We

observed in our experiments that if in every epoch, training

is consecutively performed on the two datasets, the model

tends to overfit to the dataset that is used first. We therefore

randomly shuffle the order in which the two datasets are used

in each epoch.

2) Secondly, a dropout (“keep probability” = 0.5) is applied

to the last stage of the decoder which acts to prevent overfitting

even in the case of noisy labels. We argue that additional noise

correction layer (as advocated by Hedderich and Klakow [20])

is not needed in this case as overfitting to noisy characters

can simply be avoided by applying sufficient regularization

through dropout [21].

3) Moreover, we observe in the literature [20] that the noise

layer significantly helps in the case of less clean training data,

and the results are not significantly improved by the addition

of large amounts of clean data. Since, we train with a large

amount of clean as well as noisy labeled real data, we avoid

using the noise correction layer.

B. End to end model for scene text recognition

Our end-to-end model is developed over the tensorflow

implementation of attention ocr [22]. It is important to note

that the vehicles appear at different scales in the scene as

shown in Figure 1 (a,b,d). Thus, a powerful encoder is needed

to capture the multi-scale variation across the license plates.

Furthermore, as shown in Figure 1 (c), similarly scaled license

plates are positioned at varying locations in the scene. More-

over, license plates exist at varying orientations in the scenes

(Figure 1 (b,d)). Thus attention-based models are important to

locate the character images in the scene. Our model has the

following components (refer Figure 4):

1) As a powerful encoder, the inception based CNN learns

to extract the features f from the input image [23]. One of

the important parts of inception based network is that it has

varying sized convolution layers in parallel, which helps in

learning the text images at different resolutions.

2) With attention based LSTM as the powerful decoder,

attention is learned over i) the features from one of the middle

layer of the inception based network, ii) one-hot-encoded

(OHE) vectors ex and ey for both x and y coordinates of



Fig. 4. Top: Two-headed split-attention based model. Bottom: Attention masks, note that the two masks (shown in red and blue) have unique coverage.

the features, and iii) hidden state of the LSTM at the previous

time step of decoding. The OHE vectors for the coordinates

provide location awareness to the network [10], thus making

it possible to jump from the upper right character of the multi-

line plate to the lower left character (refer Figures 1 d and 4).

3) An LSTM layer takes the context vector from the

attention layer as well as the previous OHE output of the

decoded sequence thus learning the language model (or license

plate grammar in our case) via auto-regression.

We also experiment with a multi-head attention mecha-

nism, which consists of several attention layers running in

parallel [24]. We split the encoded features f into two or

more parts and learn separate attention masks over each of

them. Moreover, we keep each attention mask location aware

by appending their respective features with one hot encoded

vectors for both x and y coordinates of the feature map.

The splitting of features reduces the computational overhead

of the multi-head attention approach, and also allows the

different “attention heads” to learn different information from

the respective features. It also leads to an ensemble effect.

Finally, context vectors obtained by applying the attention

masks to corresponding splits (concatenated with OHE vec-

tors), are concatenated together to form the input to the LSTM.

Figure 4 provides an illustration of such a model for two-

headed attention. As shown, the features f are split into two

parts f1 and f2 (shown in green and blue colours). The context

vectors ct1 and ct2 are finally concatenated to form the input

of the LSTM layer. For reasons explained in Section III-A,

we train by randomly switching between the models for clean

synthetic data and noisy labeled data, and incorporate the

dropout (with keep probability = 0.5) in the last layer of LSTM

to avoid overfitting to noisy characters. The complete pipeline

is shown in Figure 3.

Fig. 5. Sample synthetic scenes with Devanagari & Latin scripts.

IV. EXPERIMENTS

We experiment on three different datasets with varying

complexities. Firstly, we work on license plate recognition in

chaotic Indic scenes with noisy labelled real data as well as

clean synthetic data. To obtain the real data with noisy labels

we use DeepTextSpotter [5]. The DeepTextSpotter model is

trained on the SynthText dataset [6], as well as the ICDAR

datasets [3], [4]. Since it is not trained on license plate images,

the overall performance is not satisfactory, whereas we obtain

73% word-level accuracy on the data that follows the license

plate grammar. We work on 480x260 images for end-to-end

experiments and all the license plate/sub-plate images are

resized, with bilinear interpolation, to 32x100 images for input

to the baseline model. To obtain clean data, we synthesize a

large number of scene images with text from Indian license

plates using SynthText [6]. For each license plate, we select

a random 280x460 crop around it (covering the other license

plate images with black pixels if they exist in the crop). For

baseline, we obtain the license plate images similar to the

one shown in Figure 3 (top-left). To obtain all the synthetic

images for our experiments we use 18 freely available license

plate fonts [25]. Using the method described in Section II, we

obtain 1063k frames with license plates and corresponding

predictions for training using 55 hours of video data. We train

our models on 1063k frames with 64:16:20 train:val:test split.

Additionally, for generalization across various Indian states,



Training Method Character Accuracy with Sequence Accuracy with Character Accuracy with Sequence Accuracy with
inception-v3 encoder inception-v3 encoder inc.-resnet-v2 encoder inc.-resnet-v2 encoder

Baseline CNN-RNN model 96.74% 86.12% 96.74% 86.12%
E2E model with 1 head attention 97.48 % 89.87% 97.94 % 91.28%
E2E model with 2 head attention 97.62% 91.06% 98.06 % 91.56%
E2E model with 4 head attention 88.40 % 69.43% 98.12% 92.05%
E2E model with 8 head attention - - 98.43% 93.30%

TABLE II
EVALUATION ON LICENSE PLATE SCENES. E2E STANDS FOR END-TO-END. THE DATASET IS COMPLEX DUE TO 1) RECOGNITION BEING PERFORMED ON

CONTINUOUS VIDEO FRAMES, 2) PRESENCE OF MOTION BLUR IN THE FRAMES WHERE WE INTERPOLATED THE ANNOTATIONS.

we use 187k synthetic scenes (only while training).

We avoid the use of synthetic dataset and dropout layer

while training our models on FSNS dataset since it is large

in quantity and contain clean annotated labels (as compared

to our noisy-labelled license plate dataset). Moreover, each

training and testing sample from FSNS dataset reuses encoder

four times, once for each view. We further perform our

experiments with mixed-6a layer from the inception-resnet-

v2 as an encoder for all our datasets. Using this encoder we

obtain the features of size 14x28x1088 for license plate images

and Indic Street Board images, and 7x7x1088 for each view

in FSNS images. For Indic Street Boards, we obtain around

79k frames, each of size 280x460, from the videos described

in Table I. We use initial 50k frames for training, next 12k

for validation and remaining 17k for testing. We also augment

our training dataset with 700k synthetic scenes obtained from

SynthText (modified to inlcude large multi-script sequences,

refer Figure 5) with around 50 unicode fonts [26]. Additional

experimental details, including hyper-parameters, are given in

the supplementary material.

V. EVALUATION

In this section, we present the results of our experiments.

A. Visualization of Attention Masks

The predictions of our model for some of the complex

test cases are shown in Figure 1. In, Figure 4 (bottom), we

present results visualizing the multi-head attention masks (re-

sized to image size with nearest neighbour interpolation) for

text recognition. (Single-head results available in the supple-

mentary material.) It is important to note that, specifically for

license plate scenes, one of the attention masks moves over

each and every character due to randomness of the chosen

character at each position on the plate. In contrast, we observed

that for other data sets that the attention mask often remains

idle (on the edges of the image) after reading the initial few

characters of highly frequent words in the language (refer

attention masks in the literature [10]). This is probably due to

1) the implicit language model, 2) large receptive fields around

each feature location, or 3) the mask not finding the character

(due to occlusion, missing view) in the image and therefore

remaining idle. We observed that the 47.26% of attention

weights are focused on the edge of 100 sample images of

FSNS dataset, whereas the fraction goes down to 19.69%

(mainly due to borders in some of the videos) for the same

number of license plate scenes. As shown in Figure 4 (bottom),

both the masks (shown in red and blue) have unique coverage.

Moreover, it can be observed that the first attention mask (in

red) moves from the first character to the last character in

the correct reading order (top-to-bottom followed by left-to-

right) for the multi-line license plates. The second mask (in

blue) probably explores the new lines, non-pattern text and

the background regions. Moreover, the blue mask is highly

scattered at locations where it could not find the license plate

patterns. We observe that the attention masks for 4 (and more)

headed attention models are more scattered as compared to 2

headed attention models. Though scattered, coverage of each

mask is unique irrespective of the number of heads used in

the models.

B. Evaluation on continuous License Plate Video Scenes

1) Effect on increasing number of heads: The results for

our experiments with license plate scenes, are shown in

Table II. As shown, the baseline model achieves the character

level accuracy of 96.74% and sequence accuracy of 86.12%.

With inception-v3 encoder, for the model with single head at-

tention we achieve a gain in sequence level accuracy of 3.75%.

The accuracy gains further increases to 4.94% with the two-

headed attention model. Splitting the features further for four-

headed attention decreases the performance with inception-v3

encoder. This happens probably because it becomes difficult

to learn the proper attention masks with a lesser number of

features (288/4 = 72). This also indicates that improvement

gains for the model with two-headed attention are not due to

an increase in the number of parameters of the model. The

residual networks have been shown to improve performance

in image classification tasks in literature [27]. The problem

of decrease in accuracy with increase in heads is resolved by

using better encoder with denser layer to derive features i.e.

the mixed-6a layer (with feature depth = 1088) of inception-

resnet-v2 network. Thus, with this encoder, we can observe the

gain of 5.16% using single headed attention w.r.t. baseline,

and the gain further increases to 7.18% using eight headed

attention (no. of features with each attention being 136).

2) Effect on increasing inception parameters: As shown in

Table II, both character level accuracy as well as sequence

accuracy increases with the inception-resnet-v2 encoder as

compared to inception-v3 encoder.

C. Evaluation on FSNS dataset and Indic Street Boards

We further experiment with multi-headed attention models

on the French Street Name Signs (FSNS) dataset. We use

the mixed-6a layer of the inception-resnet-v2 network as

encoder for the reasons mentioned in previous subsection. The

performance on the FSNS dataset is shown in Table III. As

shown, the models with multi-headed attention masks perform



Seq. Acc. on Seq. Acc. on
Training Method FSNS dataset IIIT-ILST

Baseline Model Smith et al. [28] CNN-RNN
Baseline Results 72.46% 42.90%#
E2E model w/t 1 head attention 84.20%* 46.27%
E2E model w/t 2 head attention 84.59% 47.63%
E2E model w/t 4 head attention 84.86% 50.36%
E2E model w/t 8 head attention 85.30% 51.09%

TABLE III
EVALUATION ON FSNS DATASET., *STATE-OF-THE-ART [10], AND

IIIT-ILST DEVANAGARI DATASET, #STATE-OF-THE-ART [29].

better than the model with single-headed attention. Also, it

is important to note that the performance improves with an

increase in the number of heads from two to eight and our

models outperform state-of-the-art results [10].

We trained our model on 750k Indic Street Board scenes

described in Section IV. On standard IIIT-ILST Devanagari

dataset of 1.1k images, each containing a word, we obtain

the results shown in Table III. As shown, we outperform

the state-of-the-art results for the dataset [29]. Moreover, the

models with multiple masks perform better than the models

with a comparatively lesser number of masks. Our preliminary

results on the end-to-end test set of 17k frames from the multi-

lingual dataset are just 35% accurate on character level and

13% accurate on the sequence level. This happens because

the task of end-to-end recognition in Indic Street Board

scenes is extremely challenging due to the presence of hand-

written characters, two scripts (Devanagari and Latin) or three

languages (Hindi, Marathi and English), and larger sequence

length (180 w.r.t. 35 in FSNS dataset) in the Indic Street

Boards. We are hopeful that by improving the techniques to

train attention based models on large sequential multilingual

data will improve the results further. Reducing the sequence

length by using script grammar may also be an interesting area

for future work.

More sample results and ablation studies (related to the

performance on images with varying intensities) of our work

are given in the supplementary material.

VI. CONCLUSION

We present an end-to-end trainable framework for reading

text from scenes and illustrated its application in two sce-

narios: (i) recognizing license plates automatically in chaotic

traffic conditions, a task for which we curated our own dataset

and (ii) the existing publicly available FSNS and IIIT-ILST

Devanagari datasets. We perform our experiments for license

plate recognition on a large number of video frames. A salient

point of our framework is that our models, when trained only

on a combination of noisy labelled data and clean synthetic

data and when appropriately tuned, set new benchmarks for the

task. Moreover, we are the first to observe that multi-headed

attention is more effective in reading scene text than the single

headed attention.
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